

NZG

INTRODUCTION TO SMR'S

Ferry Roelofs 20 April 2018

CONTENTS

- 1. What is an SMR?
- 2. Why SMR's?
- 3. Which SMR's?

WHAT IS AN SMR?

WHAT IS AN SMR? DEFINITION: IAEA

IAEA

- Small to Medium sized Reactors
- < 700 MWe or even < 300 MWe</p>
- Small grids
- Low rates of increase in demand
- (Developing countries with developing grids)
- Multi-module offers operation flexibility
- Cogeneration
- Alternative fuel management

WHAT IS AN SMR? DEFINITION: US DOE

- US DOE
 - Small Modular Reactor
 - < 300 MWe
 - 'Plug and play'
 - Flexibility (financing, siting, sizing, end use)
 - Phased investment when modular constructed
 - Isolated areas
 - Proliferation resistant by cassette fuelling

US DOE, 2010

WHAT IS AN SMR? REACTOR GENERATIONS

WHY SMR'S?

WHY SMR?

- Small grids / off-grid locations
 - Developing countries
 - Islands
 - Arctic/desolate regions
- Low rates of increase in demand
- Reduction of investment risk
 - Small size
 - Phased investment (per unit)
- Combined heat and power (cogeneration)
 - Linked to industry end-user

WHY SMR? MINING VS POWER GRID (CANADA)

WHY SMR? ECONOMICS OF NUMBERS VS SCALE

WHY SMR? ECONOMICS OF NUMBERS VS SCALE

WHY SMR? COST DISTRIBUTION IN NUCLEAR

- Nuclear: Capital costs by far most important
 - Reduction in capital cost = reduction in electricity generation cost

WHY SMR? CASH FLOW

WHY SMR? INVESTMENT RISK REDUCTION

Cash flow multiple SMR's

WHY SMR? DESIGN SIMPLIFICATION

- Thermal power is an important factor in design of safety systems
- Decay heat 10% ↓ of nominal thermal power

WHY SMR? BENEFITS & DRAWBACKS

Technology Issues

- Shorter construction period (modularization)
- Potential for enhanced safety and reliability
- Design simplicity
- Suitability for non-electric application (desalination, etc.).
- Replacement for aging fossil plants, reducing GHG emissions

Non-Techno Issues

- Fitness for smaller electricity grids
- Options to match demand growth by incremental capacity increase
- Site flexibility
- Reduced emergency planning zone
- Lower upfront capital cost (better affordability)
- Easier financing scheme

Technology Issues

- Licensability (FOAK designs)
- Non-LWR technologies
- Operability and Maintainability
- Staffing for multi-module plant; Human factor engineering;
- Supply Chain for multi-modules
- Advanced R&D need

Non-Techno Issues

- Economic competitiveness
- Plant cost estimate
- Regulatory infrastructure
- Availability of design for newcomers
- Physical Security
- Post Fukushima action items on institutional issues and public acceptance

WHICH SMR'S

WHICH SMR'S? DIFFERENT TYPES

- SMR's are technology independent:
 - Light Water Reactor
 - Mostly PWR, often integral
 - High Temperature Reactor
 - Very suitable for cogeneration
 - Molten Salt Reactor
 - Many start-ups

- Sodium Fast Reactor
 - Scaled down versions of large SFR
- Lead Fast Reactor
 - Some dedicated designs
- Gas Fast Reactor
 - One special design

WHICH SMR'S? LWR: CAREM

- Central Argentina de Elementos Modulares
- Vendor: CNEA / INVAP
- 27 MWe
- Integral primary system (steam generators in vessel)
- Electricity & desalination
- Construction of prototype in Formosa started in 2014. Operation start planned in 2019.
- Prototype to be followed by larger versions (100-200 MWe)
- Under consideration for desalination in Saudi Arabia

WHICH SMR'S? LWR: KLT-40S

- Vendor: OKBM
- 35-70 Mwe
- Refuelling 3-4 yr
- Floating nuclear plant
- Twin reactor plant proven for icebreaker propulsion
- First plant 'Akademik Lomonosov' under construction for Pevek in the Chukota region (electricity & heat supply for naval base) as replacement of 35 MWe thermal plant by 2020. Start planned 2019.

WHICH SMR'S? LWR: NUSCALE

- Vendor: NuScale Power
- 160 MWth / 50 MWe
- Integral primary system
- <12 reactors in shared pool
- Refuelling 2 yr
- Natural circulation
- Electrically heated prototype

WHICH SMR'S? LWR: UK SMR

• UK SMR

- Vendor: Rolls-Royce
- 400-450 Mwe
- 3-loop PWR
- Optimise LCOE vs capital costs
- Operation start 2030

WHICH SMR'S? LWR: FRANCE

• French SMR

- Vendor: Technicatom / Naval Group / CEA / EDF
- 170 MWe
- Integral PWR
- Metallic containment shell submerged in water pool
- 2-4 units per site
- Grace time: 1 week

WHICH SMR'S? LWR: EVINCI

eVinci microreactor

- Vendor: Westinghouse
- 0.2 25 MWe electricity and heat
- Unique core design, steel monolith with channels for heat pipes and fuel pellets
- Refuelling 10 yr
- Qualification for commercial operation planned by 2024
- Market: Off-grid customers

WHICH SMR'S? HTR: HTR-PM

HTR-Pebble Modular

- Vendor: CNECC, China
- 500 MWth / 200 MWe
- Based on German HTR-Modul Design
- Steam cycle (indirect)
- ~500 000 Pebbles
- Modular
- Start operation planned 2018

WHICH SMR'S? HTR: PBMR

- Pebble Bed Modular Reactor
 - Vendor: PBMR, South-Africa
 - 165 MWe
 - Pebbles
 - Based on German HTR-Modul Design
 - Brayton cycle (direct)
 - Project abandonned in 2010

WHICH SMR'S? HTR: HTMR

- High Temperature Modular Reactor
- HTMR Ltd
- 35 MWe / 100 MWth
- 750°C
- Steam cycle
- Flexible fuel (U, Pu, Th)
- Conceptual design planned for 2018

WHICH SMR'S? HTR: XE-100

- X-energy 100
- X-Energy, USA
- 200 MWth / 76 MWe
- ~220 000 Pebbles
- Steam production at 540°C
- Underground building
- Conceptual design started in 2017
- MoU on potential in Jordan

WHICH SMR'S? HTR: STARCORE

StarCore

- StarCore Power LLC
- 36 MWth / 20 MWe
- 5 yr refuelling
- Underground building
- Fully automated

WHICH SMR'S? HTR: U-BATTERY

• U-Battery

- U-Battery
- 10 MWth / <4 MWe</p>
- 750°C process heat
- Industrial power units
- Off-grid locations
- Back-up for large plant emergency diesels
- Demonstration by 2026

WHICH SMR'S? MSR: IMSR

Integral Molten Salt Reactor

- Terrestrial Energy
- 400 MWth / 192 MWe
- Sealed and replaceable core
- Refueling 7 yr
- Successfully concluded first phase of Canadian regulatory program

WHICH SMR'S? MSR: LFTR

- Liquid-Fluoride Thorium Reactor
- Design: Flibe Energy
- FLiBe salts
- Graphite Moderator
- 600 MWth / 250 MWe
- Fuel: Th
- Breeder

WHICH SMR'S? MSR: TAP

TransAtomic Power

- Design: Transatomic Power
- Li-F based salt
- Moderator: Zirconium Hydride
- 1250 MWth / 520 MWe
- Core outlet: 650°C
- Efficiency: 44%
- Fuel: Uranium
- 'Walkaway safe'

WHICH SMR'S? MSR: MK1-PB FHR

- Mark-1 Pebble Bed Fluoride salt-cooled High temperature Reactor
- Designs: ORNL / MIT / University of California
- 236 MWth / 100 MWe PB-FHR
- Molten salt coolant
- Core outlet: 700°C
- Fuel similar to HTR
- Increased heat capacity compared to gas cooled HTR
- Smaller more economic system compared to gas cooled HTR

WHICH SMR'S? LFR: SEALER

- Swedish Advanced Lead Reactor
- Design: LeadCold
- Lead coolant
- 8-20 MWth / 3-7 MWe
- Potential Demo Site
- Cambridge Bay (Canada)
- Purpose
- Electricity production for isolated (arctic) communities or mines

WHICH SMR'S? LFR: SVBR

- Svintsovo-Vismutovyi Bystryi Reaktor
 - Design: AKME
 - 280 MWth / 100 MWe
 - Core temperature 345 495°C
 - Lead-bismuth coolant
 - Integral primary system
 - Forced cooling
 - Refuelling 8 yr
 - License obtained in 2015 for Dimitrovgrad.
 Need for private investors.
 - Electricity, district heat & desalination

WHICH SMR'S? GFR: EM²

- Energy Multiplier Module
 - Design: General Atomics
 - 500 MWth / 240 MWe
 - Core temperature up to 850°C
 - Refuelling 30 yr

WHICH SMR'S? INTERNATIONAL PLAYING FIELD

WHICH SMR'S? INTERNATIONAL PLAYING FIELD

DUTCH SMR!

• GKN

'Gemeenschappelijke Kerncentrale Nederland'

- 1968 1997
- Dodewaard
- 55 MWe
- Gen I BWR

QUESTIONS?

